歡迎來(lái)到—??趦粑乃幚砜萍加邢薰?/p>

媒體報(bào)道

海南三亞廢水處理技術(shù)研究

更新時(shí)間:2018-02-08  瀏覽次數(shù):1946

生物流化床應(yīng)用于廢水處理已有近30年的歷史, 在多種污(廢)水處理場(chǎng)合已得到了廣泛應(yīng)用.由于生物流化床在水處理應(yīng)用方面具有微生物相多樣化、微生物濃度高、耐沖擊負(fù)荷能力強(qiáng)、比表面積大、氧傳質(zhì)效率高等優(yōu)點(diǎn), 國(guó)內(nèi)外研究者一直對(duì)生物流化床的填料設(shè)計(jì)、結(jié)構(gòu)優(yōu)化及其新型流化床的開(kāi)發(fā)有著濃厚的興趣, 但傳統(tǒng)結(jié)構(gòu)的生物流化床在應(yīng)用中仍存在如下問(wèn)題:固液分離時(shí)間大于反應(yīng)時(shí)間的結(jié)構(gòu)不合理現(xiàn)象;大型化的瓶頸問(wèn)題;反應(yīng)器停止后再啟動(dòng)流化困難;固液接觸面摩擦較弱易造成載體生物膜細(xì)胞傳質(zhì)濃度邊界層趨向穩(wěn)定而制約傳質(zhì)效率;相間相對(duì)流動(dòng)速度差小, 作用于生物膜的水力剪切力較弱, 載體生物膜新舊菌體更新速率慢, 影響了生化代謝效率等.針對(duì)傳統(tǒng)生物流化床的特點(diǎn), 本課題組將四邊形生物流化床、膜生物反應(yīng)器、折流式厭氧反應(yīng)器與生物流化床相結(jié)合, 設(shè)計(jì)出一種新型生物流化床—四邊形折流式膜生物流化床.反應(yīng)器整體為長(zhǎng)方體結(jié)構(gòu)且保留了傳統(tǒng)生物流化床塔式結(jié)構(gòu);下部采用了折流板與導(dǎo)流錐設(shè)計(jì)出一個(gè)進(jìn)水角度, 利用該角度來(lái)沖擊反應(yīng)器底部填料, 提高了填料的利用率, 實(shí)現(xiàn)了再啟動(dòng)流化容易;上部采用了浸沒(méi)式膜組件, 利用氣、固、液三相沖刷膜組件, 降低了膜污染, 解決了載體流失等問(wèn)題.

目前, 關(guān)于生物流化床的動(dòng)力學(xué)研究大多是運(yùn)用脈沖響應(yīng)法、數(shù)值模擬、壓差法和光纖探頭測(cè)速法等, 這些研究成果較好地揭示了三相生物流化床的動(dòng)力學(xué)特性, 但浸入式測(cè)試技術(shù)具有時(shí)空分辨率低、標(biāo)定曲線(xiàn)具有不確定性等局限性, 對(duì)流場(chǎng)干擾是最大局限;數(shù)值模擬大多認(rèn)為固相為液體的一部分, 把氣液雙流體模型應(yīng)用于氣、固、液三相流, 模擬和模型準(zhǔn)確度不高, 均不能較真實(shí)地反應(yīng)液相流態(tài).粒子圖像測(cè)速技術(shù)(Particle Image Velocimetry, 簡(jiǎn)稱(chēng)PIV)作為一種對(duì)流場(chǎng)無(wú)干擾的瞬態(tài)全流場(chǎng)測(cè)試手段, 既具備單點(diǎn)測(cè)量技術(shù)的分辨率和精度, 又能獲得流場(chǎng)的整體結(jié)構(gòu)和瞬態(tài)圖像.PIV的基本原理是在流場(chǎng)中布撒一些與流體跟隨性良好且具有良好的示蹤性和反光性的示蹤粒子, 用激光照射所測(cè)區(qū)域, 使用CCD相機(jī)獲取示蹤粒子的瞬時(shí)運(yùn)動(dòng)圖像, 設(shè)置適當(dāng)?shù)目鐜瑫r(shí)間, 對(duì)拍攝的兩幅連續(xù)的圖像進(jìn)行互相關(guān)計(jì)算, 根據(jù)兩幀圖像的位移和時(shí)間間隔, 從而得到流場(chǎng)的速度場(chǎng).近十幾年來(lái), PIV被廣泛應(yīng)用在氣液兩相流流場(chǎng)測(cè)量中, 例如, 將PIV技術(shù)與激光誘導(dǎo)熒光法結(jié)合后測(cè)定了氣液兩相流的速度場(chǎng), 并獲得了氣泡流態(tài)特性;應(yīng)用PIV技術(shù)測(cè)試了多孔同時(shí)曝氣對(duì)近膜面液相速度場(chǎng)的影響.通過(guò)這些研究證明了PIV的準(zhǔn)確性和可靠性, 為利用PIV分析四邊形折流式膜生物流化床內(nèi)液相流場(chǎng)特性, 特別是在有少量填料時(shí)液相流場(chǎng)可視化研究指明了前景.海南生活污水處理設(shè)備技術(shù)系統(tǒng)

本文基于取樣法和PIV技術(shù), 對(duì)四邊形折流式膜生物流化床在不同進(jìn)水流量和曝氣強(qiáng)度組合的工況下的填料濃度和液相流場(chǎng)特性進(jìn)行測(cè)量, 同時(shí)對(duì)填料濃度、流場(chǎng)特性和膜污染三者之間的關(guān)系進(jìn)行剖析, 尋求流化床運(yùn)行過(guò)程中節(jié)能的結(jié)構(gòu)與優(yōu)化的操作條件.

2 實(shí)驗(yàn)裝置和方法(Experiments) 2.1 實(shí)驗(yàn)系統(tǒng)

四邊形折流式膜生物流化床實(shí)驗(yàn)測(cè)試系統(tǒng)的流程如圖 1a所示, 主要由四邊形折流式膜生物流化床、進(jìn)出水系統(tǒng)、激光系統(tǒng)、CCD攝像系統(tǒng)、膜組件、曝氣系統(tǒng)和圖像處理系統(tǒng)等部分組成.流化床為長(zhǎng)方體的透明玻璃體, 結(jié)構(gòu)尺寸為300 mm×150 mm×950 mm(長(zhǎng)×寬×高), 總?cè)莘e為42.75 L, 折流板底部縫隙高度為72 mm, 傾斜角度為35°, 導(dǎo)流錐傾斜角度為30°.膜組件為中空纖維膜超濾膜組件, 采用聚偏氟乙烯材質(zhì)制成, 膜壁厚40~50 μm, 微孔平均孔徑為0.1~0.2 μm, 膜尺寸為40 mm×300 mm, 標(biāo)準(zhǔn)膜通量為200 L·h-1.曝氣系統(tǒng)中曝氣管管徑為5.8 mm, 曝氣頭尺寸為34 mm×43 mm, 曝氣孔孔徑為0.1~0.3 mm.實(shí)驗(yàn)中為防止膜組件和曝氣頭的擺動(dòng), 將曝氣頭固定在膜組件正下方的流化床底部, 膜組件通過(guò)自制T型支架固定, 且進(jìn)水管、曝氣頭和膜組件布置在同一軸線(xiàn)上.

圖 1 四邊形折流式膜生物流化床實(shí)驗(yàn)測(cè)試系統(tǒng)流程圖(a)、拍攝分區(qū)(b)和激光斷面分布圖(c) (1.出水箱, 2.蠕動(dòng)泵, 3.激光電源, 4.激光器, 5.同步器, 6.氣體流量計(jì), 7.空氣壓縮機(jī), 8.膜組件, 9.氣泡, 10.椰殼活性炭, 11.進(jìn)氣管, 12.進(jìn)水管, 13.導(dǎo)流錐, 14.液體流量計(jì), 15.潛水泵, 16.計(jì)算機(jī), 17.相機(jī), 18.四邊形流折流式膜生物流化床, 19.曝氣頭, 20.激光斷面)

2.2 實(shí)驗(yàn)用水和填料

實(shí)驗(yàn)用水采用自來(lái)水.填料采用椰殼活性炭, 其外觀為黑色不定型顆粒(粒徑約為0.4~2.8 mm), 堆積密度為604 kg·m-3, 測(cè)定填料濃度時(shí), 填充密度為6%的流化床體積.PIV實(shí)驗(yàn)時(shí), 流化的活性炭會(huì)對(duì)激光斷面和相機(jī)拍攝形成阻擋, 使得無(wú)法正常拍攝, 氣、固、液三相流態(tài)可視化難度較大, 需進(jìn)行可視化測(cè)試.根據(jù)本次實(shí)驗(yàn)范圍, 選擇最大進(jìn)水流量200 L·h-1和最大曝氣強(qiáng)度1.05 m3·h-1進(jìn)行測(cè)試, 填充密度測(cè)試為0.1%~1.0%, 當(dāng)填充密度為0.4%時(shí), 降流區(qū)和升流區(qū)各取樣點(diǎn)中濃度最大值為2.063 mg·L-1.激光拍攝過(guò)程中未出現(xiàn)光源呈黑色條狀現(xiàn)象(黑色條狀認(rèn)定為激光光源被阻擋), 且拍攝和分析所得圖片均無(wú)空白區(qū)域.為保證實(shí)驗(yàn)獲得較高的分辨率, 選取填充密度為0.5%, 實(shí)驗(yàn)時(shí)為防止活性炭對(duì)示蹤粒子的影響, 每3~4 h更換一次活性炭.??谖鬯幚?。

2.3 PIV測(cè)試系統(tǒng)

實(shí)驗(yàn)中采用丹麥Dantec公司生產(chǎn)的PIV系統(tǒng), 包括:Litron DualPower 200-15固體激光器, 兩個(gè)激光器發(fā)射器輸出綠色片光源, 激光束的波長(zhǎng)為532 nm, 每個(gè)脈沖能量為200 mJ, 脈寬為6~8 ns;FlowSense EO CCD相機(jī), 圖像像素為2048×2048, 采樣速率為16幀·s-1;Timer Box同步器, 可以實(shí)現(xiàn)外部脈沖信號(hào)對(duì)系統(tǒng)的同步觸發(fā).示蹤粒子選用配套的PMMA-Rhodamine B-Particles(羅丹明B熒光聚合物顆粒), 粒徑為20~50 μm, 實(shí)驗(yàn)濃度控制在100 mg·L-1.該粒子具有對(duì)流場(chǎng)良好的跟隨性(Paffel et al., 1998;嚴(yán)敬等, 2005), 適用于多相流, 示蹤粒子對(duì)液相速度和粘度的影響可以忽略.

2.4 實(shí)驗(yàn)方案

填料濃度測(cè)試時(shí), 分別在四邊形折流式膜生物流化床升流區(qū)和降流區(qū)各中軸線(xiàn)上高度分別為200、400和600 mm處進(jìn)行一定體積(ν)的混合液取樣, 干燥后稱(chēng)量其中的填料量ω, 則填料的濃度(施漢昌等, 2012)為ω/ν, 相同工況情況下每次取樣3次并求得平均值.PIV實(shí)驗(yàn)在曝氣強(qiáng)度分別為0.25、0.45、0.65、0.85和1.05 m3·h-1和進(jìn)出水流量分別為50和200 L·h-1組合的工況下依次進(jìn)行, 實(shí)驗(yàn)時(shí)流化床有效容積為31.95 L, 即有效水深710 mm.實(shí)驗(yàn)中激光光源從反應(yīng)器的左側(cè)進(jìn)入, 如圖 1a所示, CCD相機(jī)放置在流化床的正面, 垂直于激光片光源方向.因CCD相機(jī)的拍攝范圍有限, 故流場(chǎng)測(cè)量區(qū)域在保證獲得較高分辨率的前提下, 拍攝區(qū)域(圖 1b)選擇為下部區(qū)域(282 mm×235 mm)、中部區(qū)域(282 mm×235 mm)和上部區(qū)域(282 mm×235 mm).激光斷面選取距膜面15 mm的激光斷面位置(圖 1c), 實(shí)驗(yàn)中依次對(duì)同種工況下3個(gè)截面進(jìn)行拍攝, 每個(gè)工況均連續(xù)記錄10000幅圖像序列, 對(duì)拍攝的圖像進(jìn)行自適應(yīng)互相關(guān)計(jì)算, 得到流場(chǎng)中的速度分布信息, 結(jié)果表明, 流場(chǎng)速度測(cè)量誤差(Feng et al., 2010)小于2 mm·s-1.

3 實(shí)驗(yàn)結(jié)果與分析(Results and discussion) 3.1 四邊形折流式膜生物流化床填料濃度的分布特性

圖 2給出了流化床填料濃度的變化曲線(xiàn).從圖 2a可以看出, 進(jìn)水流量為50 L·h-1時(shí), 升流區(qū)填料濃度隨曝氣強(qiáng)度的增加而增長(zhǎng).進(jìn)水流量為200 L·h-1時(shí), 填料濃度隨曝氣強(qiáng)度的增加呈先上升后下降趨勢(shì).升流區(qū)在相同曝氣強(qiáng)度的工況下, 填料濃度隨進(jìn)水流量的增加呈增加趨勢(shì).從圖 2b可以看出, 進(jìn)水流量為50 L·h-1時(shí), 降流區(qū)填料濃度隨曝氣強(qiáng)度的增加而增長(zhǎng), 曝氣強(qiáng)度為1.05 m3·h-1時(shí), 降流區(qū)填料濃度達(dá)到峰值;曝氣強(qiáng)度分別為0.25、0.65、0.85和1.05 m3·h-1時(shí), 填料濃度隨流化床高度的降低而下降.進(jìn)水流量為200 L·h-1時(shí), 降流區(qū)填料濃度隨曝氣強(qiáng)度的增加呈先上升后下降趨勢(shì);曝氣強(qiáng)度分別為0.25、0.45、0.65和0.85 m3·h-1時(shí), 填料濃度隨流化床高度的降低呈先下降后上升趨勢(shì).降流區(qū)在相同曝氣強(qiáng)度的工況下, 流化床填料濃度隨進(jìn)水流量的增加呈增加趨勢(shì).

流化床在相同進(jìn)水流量工況下, 曝氣強(qiáng)度是影響填料濃度變化的主要因素;在相同曝氣強(qiáng)度工況下, 進(jìn)水流量是影響填料濃度變化的主要因素.在多數(shù)工況下, 流化床中部區(qū)域?yàn)橄∠鄥^(qū)域;曝氣強(qiáng)度和進(jìn)水流量的匹配可使流化床的填料濃度達(dá)到最高值;在相同工況下升流區(qū)的填料濃度均大于降流區(qū)的濃度;進(jìn)水流量和曝氣強(qiáng)度為200 L·h-1、0.65 m3·h-1工況下的填料濃度與50 L·h-1、1.05 m3·h-1工況下的填料濃度較接近.可見(jiàn), 進(jìn)水流量的增加加速了降流區(qū)填料的流化, 進(jìn)而加速整個(gè)流化床的填料流化;且不同進(jìn)水流量和曝氣強(qiáng)度組合的工況下, 可使填料濃度達(dá)到一致.分析其原因, 由于折流板的存在, 折流板上部區(qū)域?yàn)槠貧馑绤^(qū), 實(shí)驗(yàn)中發(fā)現(xiàn)大量的填料在升流區(qū)形成了內(nèi)循環(huán), 且存在諸多小循環(huán), 即由于折流板的存在, 折流式膜生物流化床為內(nèi)外雙循環(huán)和諸多小循環(huán)(圖 2c);另一原因是由于進(jìn)水管的布置會(huì)使底部堆積的填料進(jìn)行向左的沖擊, 當(dāng)沖擊到曝氣區(qū)或環(huán)流區(qū)后, 填料將隨氣液上升形成環(huán)流.填料的流態(tài)化使得填料之間、填料與膜組件之間相互摩擦, 并使液相流態(tài)更加紊亂, 填料濃度和液相紊亂程度越大, 起到?jīng)_刷膜組件的作用越大, 能較大程度地抑制膜組件表面沉積層的形成, 有利于控制膜污染, 即填料濃度是膜污染控制一個(gè)重要因素.因此, 設(shè)計(jì)時(shí)膜組件放置高度可選擇為折流式膜生物流化床升流區(qū)的上部靠近自由液面區(qū)域.


【免責(zé)聲明】:文章來(lái)自網(wǎng)絡(luò),我們對(duì)文中陳述觀點(diǎn)判斷保持中立,并不對(duì)文章觀點(diǎn)負(fù)責(zé)。僅供讀者參考。版權(quán)屬于原作者。